A COMPARATIVE APPROACH ON PID CONTROLLER TUNING USING SOFT COMPUTING TECHNIQUES

1T.K.Sethuramalingam, 2B.Nagaraj
1Research Scholar, Department of EEE, AMET University, Chennai
2Professor, Karpagam College of Engineering, Coimbatore
1tksethuramalingam@gmail.com

Abstract: A proportional controller (Kp) will have the effect of reducing the rise time and will reduce, but never eliminate, the steady-state error. An integral control (Ki) will have the effect of eliminating the steady-state error, but it may make the transient response worse. A derivative control (Kd) will have the effect of increasing the stability of the system, reducing the overshoot, and improving the transient response. PID controllers are widely used in industrial plants because it is simple and robust. Industrial processes are subjected to variation in parameters and parameter perturbations, which when significant makes the system unstable. The aim of this paper is to design a controller of a various plant by selection of PID parameters using soft computing techniques. Z-N methods whose performance have been compared and analyzed with the intelligent tuning techniques like Genetic algorithm, Evolutionary programming and particle swarm optimization. Soft computing methods have proved their excellence in giving better results by improving the steady state characteristics and performance indices.

Key words: Genetic algorithm, Evolutionary programming, particle swarm optimization and soft computing.

1. INTRODUCTION

Conventional proportional integral derivative controller is widely used in much industrial application due to its simplicity in structure and ease to design [1]. However it is difficult to achieve the desired control performance. Tuning is important parameter for the best performance of PID controllers. PID controllers can be tuned in a variety of ways including hand tuning Ziegler Nichols tuning, Cohen-coon tuning and Z-N step response, but these have their own limitations [3]. Soft computing techniques like GA, PSO and EP methods have proved their excellence in giving better results by improving the steady state characteristics and performance indices.

1.1Proportional Integral Derivative Controller:
The PID controller calculation involves three separate parameters proportional integral and derivative values. The proportional value determines the reaction of the current error, the integral value determines the reaction based on the sum of recent errors, and derivative value determines the reaction based on the rate at which the error has been changing the weighted sum of these three actions is used to adjust the process via the final control element. The block diagram of a control system with unity feedback employing Soft computing PID control action in shown in figure 1 [7].

![Figure 1: Block diagram of Intelligent PID controller](image)

2. REASON FOR SELECTING SOFT COMPUTING TECHNIQUES

Model type: Many methods can be used only when the process model is of a certain type, for example a first order plus dead time model (FOPDT). Model reduction is necessary if the original model is too complicated. [6]

Design criteria: These methods aim to optimize some design criteria that characterize the properties of the closed-loop system. Such criteria are, for example, gain and phase margins, closed-loop bandwidth, and different cost functions for step and load changes. [6]
Approximations: Some approximations are often applied in order to keep the tuning rules simple. [6]

The purpose of this project is to investigate an optimal controller design using the Evolutionary programming. Genetic algorithm, Particle swarm optimization techniques. In this project, a new PID tuning algorithm is proposed by the EP, GA, and PSO techniques to improve the performance of the PID controller.

The ultimate gain and the ultimate period were determined from a simple continuous cycle experiment. The new tuning algorithm for the PID controller has the initial value of parameter Kp, Ti, Td by the Ziegler-Nichols formula that used the ultimate gain and ultimate period from a continuous cycle experiment and we compute the error of plant response corresponding to the initial value of parameter.

The new proportional gain (Kp), the integral time (Ti), and derivative time (Td) were determined from EP, GA, and PSO. This soft computing techniques for a PID controller considerably reduced the overshoot and rise time as compared to any other PID controller tuning algorithms, such as Ziegler-Nichols tuning method and continuous cycling method.

2.1 Genetic Algorithm

Genetic Algorithms (GA.s) are a stochastic global search method that mimics the process of natural evolution. It is one of the methods used for optimization. John Holland formally introduced this method in the United States in the 1970 at the University of Michigan. The continuing performance improvement of computational systems has made them attractive for some types of optimization. The genetic algorithm starts with no knowledge of the correct solution and depends entirely on responses from its environment and evolution opera- tors such as reproduction, crossover and mutation to arrive at the best solution [1]. By starting at several independent points and searching in parallel, the algorithm avoids local minima and converging to sub optimal solutions.

2.1.1 Objective Function of the Genetic Algorithm:

This is the most challenging part of creating a genetic algorithm is writing the objective functions. In this project, the objective function is required to evaluate the best PID controller for the system. An objective function could be created to find a PID controller that gives the smallest overshoot, fastest rise time or quickest settling time. However in order to combine all of these objectives it was decided to design an objective function that will minimize the performance indices of the controlled system instead. Each chromosome in the population is passed into the objective function one at a time. The chromosome is then evaluated and assigned a number to represent its fitness, the bigger its number the better its fitness [3]. The genetic algorithm uses the chromosomes fitness value to create a new population consist- ing of the fittest members. Each chromosome consists of three separate strings constituting a P, I and D term, as defined by the 3-row bounds declaration when creating the population [3]. When the chromosome enters the evaluation function, it is split up into its three Terms. The newly formed PID controller is placed in a unity feedback loop with the system transfer func- tion. This will result in a reduce of the compilation time of the program. The system transfer function is defined in another file and imported as a global variable. The controlled system is then given a step input and the error is assessed using an error performance criterion such as Integral square error or in short ISE. The chromosome is assigned an overall fitness value according to the magnitude of the error, the smaller the error the larger the fitness value.

2.2 Evolutionary Programming

There are two important ways in which EP differs from GAs.

First, there is no constraint on the representation. The typical GA approach involves encoding the problem solutions as a string of representative tokens, the genome. In EP, the representation follows from the problem. A neural network can be represented in the same manner as it is implemented, for example, because the mutation operation does not demand a linear encoding [6].

Second, the mutation operation simply changes aspects of the solution according to a statistical distribution which weights minor variations in the behavior of the offspring as highly probable and substantial variations as increasingly unlikely. The steps involved in creating and implementing evolutionary programming are as fol- lows:

- Generate an initial, random population of individuals for a fixed size (according to
conventional methods Kp, Ti, Td ranges declared).

- Evaluate their fitness (to minimize integral square error).
- Select the fittest members of the population.
- Execute mutation operation with low probability.
- Select the best chromosome using competition and selection.
- If the termination criteria reached (fitness function) then the process ends. If the termination criteria not reached search for another best chromosome

2.3 Particle Swarm Optimization

PSO is one of the optimization techniques and kind of evolutionary computation technique. The technique is derived from research on swarm such as bird flocking and fish schooling. In the PSO algorithm, instead of using evolutionary operators such as mutation and crossover to manipulate algorithms, for a d-variable optimization Problem, a flock of particles are put into the d-dimensional Search space with randomly chosen velocities and positions knowing their best values.

So far (p best) and the position in the d-dimensional space [7]. The velocity of each particle, adjusted accordingly to its own flying experience and the other particles flying experience [7].

For example, the ith particle is represented, as

\[x_i = (x_{i1}, x_{i2}, \ldots, x_{id}) \]

In the d-dimensional space. The best previous position of the ith particle is recorded as,

\[P_{best_i} = P_{best_{i1}}, P_{best_{i2}}, \ldots, P_{best_{id}} \ldots (2) \]

The index of best particle among all of the particles in the group in g best d . The velocity for particle i is represented as

\[V_i = V_{i1}, V_{i2}, \ldots, V_{id} \ldots (3) \]

The modified velocity and position of each particle can be calculated using the current velocity and distance from P best_{i,d} to g best_d as shown in the following formulas.

\[V_{i,m}^{(t+1)} = W \cdot V_{i,m}^{(t)} + c_1 \cdot \text{rand}(t) \cdot P_{best_{i,m}} - x_{i,m}^{(t)} + c_2 \cdot \text{rand}(t) \cdot g_{best_d} - x_{i,m}^{(t)} \ldots (4) \]

\[x_{i,m}^{(t+1)} = x_{i,m}^{(t)} + V_{i,m}^{(t+1)} \]

\[i=1,2,\ldots,n \]

\[m=1,2,\ldots,d \]

Where

\[N= \text{Number of particles in the group} \]
\[D=\text{dimension} \]
\[T=\text{Pointer of iterations (generations)} \]
\[V_{i,m}^{(t)}= \text{Velocity of particle I at iteration t} \]
\[W= \text{Inertia weight factor} \]
\[C_1, C_2= \text{Acceleration constant} \]
\[\text{rand}()= \text{Random number between 0 and 1} \]
\[x_{i,m}^{(t)}= \text{Current position of particle i at iterations} \]
\[P_{best_i}= \text{Best previous position of the ith particle} \]
\[G_{best_d}= \text{Best particle among all the particles in the population} \]

3. Results and Discussions

In order to cover typical kinds of common industrial processes have been taken

\[\text{Model} - A \]
\[\frac{0.0147}{7.24e^{-005}s^2 + 0.000207s + 0.000437} \]

\[\text{Model} - B \]
\[\frac{1.2}{0.00077s^3 + 0.0539s^2 + 1.441} \]

\[\text{Model} - C \]
\[\frac{32.31}{s^2 + 15.1} \]

\[\text{Model} - D \]
\[\frac{46.21s + 206.1}{0.9372s^4 + 2.656s^3 + 75.87s^2 + 112.1s} \]
3.1 Implementation of Intelligent PID controller tuning

The Ziegler-Nichols tuning method using root locus and continuous cycling method were used to evaluate the PID gains for the system, using the “rlocfind” command in mat lab, the cross over point and gain of the system were found respectively.

In this paper a time domain criterion is used for evaluating the PID controller. A set of good control parameters P, I, and D can yield a good step response that will result in performance criteria minimization in the time domain. These performance criteria in the time domain include the overshoot, rise time and setting time. To control the plant model the following PSO, EP and GA parameters are used to verify the performance of the PID controller Parameter.

Performance characteristics of process model A to D were indicated and compared with the intelligent tuning methods as shown in the figure 4 to figure 7 and values are tabulated in table II to table V.

Table 1: PSO, GA and EP parameters

<table>
<thead>
<tr>
<th>PSO Parameter</th>
<th>GA Parameter</th>
<th>EP Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population size: 100</td>
<td>Population size: 100</td>
<td>Population size: 100</td>
</tr>
<tr>
<td>Wmax = 0.6</td>
<td>Mutation rate: 0.1</td>
<td>Normal distribution</td>
</tr>
<tr>
<td>Wmin = 0.1</td>
<td>Arithmetic Crossover</td>
<td>Mutation rate: 0.01</td>
</tr>
<tr>
<td>Iteration: 100</td>
<td>Iteration: 100</td>
<td>Iteration: 100</td>
</tr>
<tr>
<td>Fitness function: ISE</td>
<td>Fitness function: ISE</td>
<td>Fitness function: ISE</td>
</tr>
</tbody>
</table>

Conventional methods of controller tuning lead to a large settling time, overshoot, rise time and steady state error of the controlled system. Hence Soft computing techniques is introduces into the control loop. GA, EP and PSO based tuning methods have proved their excellence in giving better results by improving the steady state characteristics and performance indices.
Table 2: Comparison result of all methods for model -A

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Z-N</th>
<th>GA</th>
<th>EP</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settling time (sec)</td>
<td>1.57</td>
<td>0.0098</td>
<td>0.0474</td>
<td>0.787</td>
</tr>
<tr>
<td>Rise Time</td>
<td>0.2</td>
<td>0.0055</td>
<td>0.0275</td>
<td>0.0663</td>
</tr>
<tr>
<td>Overshoot (%)</td>
<td>34</td>
<td>0.0042</td>
<td>0.528</td>
<td>23</td>
</tr>
</tbody>
</table>

Table 3: Comparison result of all methods for model-B

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Z-N</th>
<th>GA</th>
<th>EP</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settling time (sec)</td>
<td>0.738</td>
<td>0.152</td>
<td>0.385</td>
<td>0.112</td>
</tr>
<tr>
<td>Rise Time</td>
<td>0.0375</td>
<td>0.063</td>
<td>0.015</td>
<td>0.001</td>
</tr>
<tr>
<td>Overshoot (%)</td>
<td>54.6</td>
<td>0.1</td>
<td>36</td>
<td>49.4</td>
</tr>
</tbody>
</table>

Table 4: Comparison result of all methods for model-C

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Z-N</th>
<th>GA</th>
<th>EP</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settling time (sec)</td>
<td>4.58</td>
<td>0.00315</td>
<td>0.134</td>
<td>0.0301</td>
</tr>
<tr>
<td>Rise Time</td>
<td>0.361</td>
<td>0.00257</td>
<td>0.0196</td>
<td>0.0246</td>
</tr>
<tr>
<td>Overshoot (%)</td>
<td>45</td>
<td>0.0365</td>
<td>26.6</td>
<td>0.224</td>
</tr>
</tbody>
</table>

Table 5: Comparison result of all methods for model-D

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Z-N</th>
<th>GA</th>
<th>EP</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settling time (sec)</td>
<td>20.4</td>
<td>0.023</td>
<td>0.43</td>
<td>0.0447</td>
</tr>
<tr>
<td>Rise Time</td>
<td>11.4</td>
<td>0.018</td>
<td>0.019</td>
<td>0.0365</td>
</tr>
<tr>
<td>Overshoot (%)</td>
<td>1</td>
<td>0.6</td>
<td>23</td>
<td>1</td>
</tr>
</tbody>
</table>

4. CONCLUSION

The GA, EP and PSO algorithm for PID controller tuning presented in this research offers several advantages. One can use a high-order process model in the tuning, and the errors resulting from model reduction are avoided. It is possible to consider several design criteria in a balanced and unified way. Approximations that are typical to classical tuning rules are not needed. Soft computing techniques are often criticized for two reasons: algorithms are computationally heavy and convergence to the optimal solution cannot be guaranteed. PID controller tuning is a small-scale problem and thus computational complexity is not really an issue here. It took only a couple of seconds to solve the problem. Conventional methods of controller tuning lead to a large settling time, overshoot, rise time and steady state error of the controlled system. Compared to conventionally tuned system, GA, EP and PSO tuned system has good steady state response and performance indices.

REFERENCES

[3] Neenu Thomas, Dr. P. Poongodi “Position Control of DC Motor Using Genetic Algorithm Based PID
Control-

